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ABSTRACT

The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory 
to improve accuracy in the predictions of operational flight life of failure-critical aerostructural 
components. A new crack growth computer program was written for reading the maximum and 
minimum loads of each half-cycle from the random loading spectra for crack growth calculations 
and generation of in-flight crack growth curves. The unified theories were then applied to calculate 
the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus® adapter 
pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research 
vehicle. A crack growth curve for each hook was generated for visual observation of the crack 
growth behavior during the entire air-launching or captive flight. It was found that taxiing and the 
takeoff run induced a major portion of the total crack growth per flight. The operational life theory 
presented can be applied to estimate the service life of any failure-critical structural components.

NOMENCLATURE

A	 crack location parameter (A = 1.12 for a surface or edge crack)
a 	 depth (crack size) of semi-elliptic surface crack, in
ai−1 	 crack size at the end of the (i – 1)-th half cycle, in
ac

o 	 operational (final) crack size associated with operational 

	 load V o
max , in, =









 =
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AM f

a
f

IC
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p 	 proof (initial) crack size associated with proof load V* , in, =





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
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AM
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Kπ σ*
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a1 	  crack size at the end of the first flight, in, = +a ac
p ∆ 1

C 	 coefficient of Walker crack growth equation, in
cycle

ksi in( )−m

c	 half length of semi-elliptic surface crack, in
E(k)	 complete elliptic function of the second kind, = −∫ 1 sin2 2k dφ φ

π
0

2

F1
* 	 number of operational flights based on the first fight load data

f	 operational load factor associated with the worst half cycle of random load .
	 .
	 spectrum, = = =

V
V

a
a

o o
c
p

c
o

max
*

max
*

σ
σ

HXLV 	 Hyper-X launch vehicle
h	 thickness of hook, in
KIC 	 mode I critical stress intensity factor, ksi in

Kmax 	 mode I stress intensity factor associated with σmax , ksi in

∆K 	 mode I stress intensity amplitude associated with stress amplitude, (σ σmax min− ), .
	 ksi in
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( )maxK i 	 mode I stress intensity factor associated with ( )maxσ i  of i-th half cycle, ksi in

∆Ki 	 mode I stress intensity amplitude associated [ ( ) ( )max minσ σi i− ] of i-th half cycle, .
	 ksi in

i	 1, 2, 3, …. , integer associated with the i-th half cycle
j	 1, 2, 3, …. , integer associated with the j-th half cycle, or the j-th flight

k	 modulus of elliptic function, = − 





1
2a

c

Mk 	 flaw magnification factor ( Mk = 1 for a shallow crack)
m	 Walker stress intensity factor exponent associated with ( )maxK m

N1	 number of stress cycles generated during the first flight
N	 partial stress cycles during flight (fraction of N1)
n	 Walker stress-ratio exponent associated with ( )1− R n

 
Q	 surface flaw and plasticity factor, = −









[ ( )]E k

Y

2
2

0 .212 σ
σ
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R 	 stress ratio associated with constant amplitude load cycle, =
σ
σ
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Ro	 stress (or load) ratio associated with the worst half-cycle, = =
σ
σ
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max

min

max

o

o

o

o
V
V

Ri 	 stress ratio associated with the i-th half cycle, =
( )
( )

min

max

σ
σ

i

iSRB/DTV	 solid rocket booster drop test vehicle
VA 	 B-52B pylon front hook load, lb
VBL 	 B-52B pylon left rear hook load. lb
VBR 	 B-52B pylon right rear hook load, lb
VPFL 	 Pegasus pylon front left hook load, lb
VPFR 	 Pegasus pylon front right hook load, lb
VPRL 	 Pegasus pylon rear left hook load, lb 
VPRR 	 Pegasus pylon rear right hook load, lb
VA	 B-52B pylon front hook
VBL	 B-52B pylon left rear hook 
VBR	 B-52B pylon right rear hook
VPFL	 Pegasus pylon front left hook 
VPFR	 Pegasus pylon front right hook 
VPRL	 Pegasus pylon rear left hook 
VPRR	 Pegasus pylon rear right hook 
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V 	 applied hook load, lb
V* 	 proof load for any hook, lb
V o

max 	 maximum load of the worst cycle of random load spectrum, lb
V o

min 	 minimum load of the worst cycle of random load spectrum, lb
∆a1 	 amount of crack growth induced at the end of the first flight, in
∆a 	 amount of a partial crack growth at any time step during the flight, in
δai 	 crack growth increment induced by the i-th half cycle, in
η 	 stress/load coefficient, ksi/lb
σ* 	 tangential stress at critical stress point induced by the proof load V* , ksi, = ηV*

σ A 	 tangential stress at critical stress point of B-52B pylon front hook induced by VA , .
	 ksi
σ BL 	 tangential stress at critical stress point of B-52B pylon rear left hook induced by .
	 VBL , ksi 
σ BR 	 tangential stress at critical stress point of B-52B pylon rear right hook induced by .
	 VBR , ksi 
σ PFL 	 tangential stress at critical stress point of Pegasus pylon front left hook induced by .
	 VPFL , ksi 
σ PFR 	 tangential stress at critical stress point of Pegasus pylon front right hook induced .
	 by VPFR , ksi 
σ PRL 	 tangential stress at critical stress point of Pegasus pylon rear left hook induced by .
	 VPRL , ksi 
σ PRR 	 tangential stress at critical stress point of Pegasus pylon rear right hook induced by .
	 VPRR , ksi 
σmax

o 	 tangential stress at critical stress point associated with operational peak load, .
	 V o

max , ksi
σU 	 ultimate tensile stress, ksi
σY 	 yield stress, ksi
σmax 	 maximum stress of constant amplitude loading cycles,  ksi
σmin 	 minimum stress of constant amplitude loading cycles, ksi
σ t 	 tangential stress along hook inner boundary, ksi
( )maxσ t 	 maximum value of σ t  at the stress critical point, ksi
τU 	 ultimate shear stress, ksi
φ 	 angular coordinate for semi-elliptic surface crack, rad
θc 	 angular location of critical stress point, deg
( )i 	 quantity associated with the i-th half cycle of random loading spectrum
( )*	 quantity associated with proof load
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INTRODUCTION

The NASA Dryden B-52B (McDonnell Douglas, St. Louis, Missouri) launch airplane has 
been used to carry various types of flight research vehicles for high-altitude air-launching tests. 
The test vehicle is mated to the B-52B pylon through one L-shaped front hook and two identical 
L-shaped rear hooks. The L-shaped structural geometry will always induce tensile or compressive 
stress concentration depending on the loading direction (B-52 hooks can have only tensile stress 
concentrations). The inner curved boundary point of the hook where the tangential tensile stress 
reaches a maximum is called a critical stress point of the hook and is the potential fatigue crack 
initiation site. 

During the early stages of the flight tests of the solid rocket booster drop test vehicle 
(SRB/DTV, 49,000 lb) (1983), the two old rear hooks (fabricated with 4340 steel) failed almost 
simultaneously during towing of the B-52B airplane carrying the SRB/DTV on a relatively smooth 
taxiway (low-amplitude dynamic loading). A microsurface crack at the critical stress point of each 
hook escaped detection because of surface masking by plating films. Those fatigue cracks could 
have been initiated from the past long period of flight test load cycling and the surface corrosion. If 
the hook failures had occurred during a takeoff run or during captive flight, a catastrophic accident 
might have occurred. This type of potential accident underscored the need for reliable and accurate 
calculations of the fatigue crack growths, which could thereby estimate the safe operational flight 
life of the hooks for each new flight test program.

Recently, the B-52B airplane has been used to carry the Hyper-X launching vehicle that air-
launches the X-43 hypersonic flight research vehicle for Mach 7–10 flight tests. The B-52B pylon 
hooks were intended to carry the total store weight of 40,000 lb (slightly lighter than the SRB/DTV 
weight 49,000 lb).

The safety of flight tests using B-52B pylon hooks to carry any drop-test vehicle [for example, 
the Hyper-X launching vehicle (HXLV)] hinges upon the structural integrity of the failure-critical 
structural components like B-52B pylon hooks and Pegasus® (Orbital Sciences Corporation, 
Dulles, Virginia) pylon hooks. It is, therefore, of vital importance to accurately determine the safe 
operational flight life for each of those failure-critical aerostructural components.

Earlier, Ko (refs. 1–6) developed several aging theories for predicting the operational flight life 
of airborne failure-critical structural components. The most accurate aging theory developed to date 
was the Ko closed-form aging theory (refs. 5, 6). In this report, the half-cycle crack growth theory 
will be incorporated into the Ko closed-form aging theory (refs. 5, 6) to improve the accuracy of 
operational life predictions of failure-critical airborne structural components. A special half-cycle 
crack growth computer program was written to calculate the crack growth needed for operational 
life predictions. The enhanced Ko closed-form aging theory was then applied to calculate the 
number of safe flights permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry 
the HXLV for air-launching the X-43 hypersonic flight research vehicle.

The operational life theory presented in this report can also be applied to estimate the service 
life of any failure-critical structural components.
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THE B-52B AIRPLANE CARRYING the HYPER-X LAUNCH VEHICLE

Figure 1 shows the B-52B aircraft carrying the HXLV with the X-43 hypersonic flight 
research vehicle mated to its nose for air-launching flight tests at Mach 7–10. Because the Pegasus 
booster rocket has a delta wing which prevents the cylindrical booster body to nest closely under 
the B‑52B pylon concave belly, a special adapter called the Pegasus adapter pylon (weighing 2,300 
lb) is used to link the B-52B pylon hooks to the HXLV (weighing 37,700 lb). The Hyper-X launch 
vehicle is carried by the four identical Pegasus adapter pylon hooks, and the Pegasus adapter pylon 
is, in turn, carried by the B-52B pylon hooks using a double-shear pin to link to the front hook and 
through the Pegasus pylon adapter-shackles to connect to the two rear hooks of the B-52B pylon. 
The total weight then carried by the B-52B pylon hooks is 40,000 lb. 

The double-shear pin is not fatigue-critical because there is no stress concentration problem. 
The two Pegasus pylon adapter shackles, however, are highly failure-critical because each shackle 
contains a rectangular hole with four, sharp, rounded corners in the upper part, and a circular hole 
in the lower part (ref. 8). Other failure-critical structural components identified are: the L-shaped 
B-52B front and two rear hooks and the four, identical L-shaped, Pegasus adapter pylon hooks 
(ref. 8). 

The operational flight-life of all the pylon hooks will be analyzed because the actual loading 
spectra for those components are now available for the application of the half-cycle crack growth 
theory. The un-instrumented Pegasus adapter shackles were not analyzed because the actual loading 
spectra do not exist.

THE KO CLOSED-FORM AGING THEORY

The following section will describe the Ko closed-form aging theory. In the formulation of 
the Ko closed-form aging theory for aerostructural operational life predictions, the following steps 
are used.

Failure-Critical Structural Components

A complex structure usually contains a certain number of failure-critical structural components, 
each of which contains a critical stress point. The critical stress point is a boundary point of the 
structural component where the tangential tensile stress concentration reaches a maximum, and 
is the potential fatigue crack initiation site. The operational life of the complex structure is then 
determined by the operational life of the worst failure-critical structural component having the 
shortest fatigue life (that is, the fastest crack growth rate at the critical stress point). Therefore, in 
the operational life analysis, the failure-critical structural components must be identified and their 
stress fields established.
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Stress/Load Equation

In the actual flight tests, the strain gages are usually installed in the vicinity of the critical 
stress point, and are calibrated to record the applied load (such as hook load). After the failure-
critical structural components are identified, stress analysis must be performed for each critical 
structural component to establish the functional relationship between the applied load and the 
induced tangential stress at the critical stress point (refs. 7–9). For example, if V*  is the proof 
load, and if σ∗  is the induced proof stress at the stress critical point, then the proof stress, σ∗ , 
may be related to the proof load, V* , through the following stress/load functional relationship in 
equation (1)

σ η* *= V (1)

where η  is defined as the stress/load coefficient, and is determined from the finite-element stress 
analysis of the critical structural component (refs. 7–9).

Operational Load Factor

The next information needed in the operational life analysis is the operational load factor, f 
(<1), defined in equation (2) as

f
V
V

o o
= = <

σ
σ
max

*
max

* 1 (2)

where σmax
o  is the operational maximum stress at the critical stress point induced by the operational 

maximum load, V o
max , of the worst half-cycle of the random loading spectrum. The worst half-

cycle is defined as the half-cycle with the maximum stress (load) amplitude, associated with the 
minimum stress ratio or load ratio as shown in equation (3)

( ) ( )σ σ σmax min max
o o o o oR R− = − = =1 Maximum...;... σσ

σ
min

max

min

max

o

o

o

o
V
V

= = .Minimum (3)

where Ro  is the stress (or load) ratio associated with the worst half-cycle. The worst half-cycle is to 
be searched out in light of condition (3) by means of a special load-factor-searching computer code 
embedded in the newly written crack growth computer program discussed in Appendix B. Keep 
in mind that the value of V o

max  may not necessarily be the peak load of the entire flight-loading 
spectrum. Past flight load data showed that the operational maximum load, V o

max , usually occurred 
during the takeoff run because the ground effect induced the maximum crack growth rate. 
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Crack Size Determinations

In developing the Ko aging theory (refs. 5, 6), the proof (initial) and operational (final) 
crack sizes { a ac

p
c
o,	 } at the critical stress point of the failure-critical structural component must 

be established first. The two crack sizes { a ac
p

c
o,	 } are associated respectively with the proof and 

operational stresses {σ σ* ,	 max
o } [or proof and operational peak loads {V V o* ,	 max }], and are to be 

calculated from crack tip equations (4) and (5) based on the fracture mechanics (refs 1–4).
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In equations (4) and (5), KIC  is the mode I critical stress intensity factor (material dependent), 
A is the crack location parameter (for a surface crack, A = 1.12, refs. 1–4), Mk  is the flaw 
magnification factor (for a shallow surface crack, Mk  = 1, refs. 1–4), and finally, Q is the surface 
flaw shape and plasticity factor. For an elliptic surface crack (surface length 2c, depth a), Q may 
be expressed as in equation (6) (refs. 1–4): 

Q E k
Y

= −






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[ ]( ) .

*
2

2

0 212 σ
σ

(6)

In equation (6), σY  is the yield stress, and E(k) is the complete elliptic function of the second 
kind defined in equation (7)

E k k d( ) = −∫ 1 sin2 2φ φ
π

	
0

2
(7)

where φ  is the angular coordinate for a semi-elliptic surface crack, seen in fig. 2 (refs. 1–4), and k 
is the modulus of the elliptic function defined in equation (8)

k
a
c

= − 





1
2

(8)

Table 1 lists the input data for finding the values of E(k) from the complete elliptic integral 
table (ref. 10) for different crack aspect ratios a/2c. The values of Q were then calculated from 
equation (6). Table 1 lists only typical values of Q calculated for the worst stress ratio σ σ*

Y = 1 . 
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Table 1.  Key data for the calculations of Q, equation (6); σ σ*
Y = 1 .

a c2 a c k a c= − ( )1 2 sin−1 k, deg. E(k)* Q

0.1 0.2 0.979796 78.463041 1.0506 0.8918
0.2 0.4 0.916515 66.421822 1.1584 1.1299
0.25 0.5 0.866025 60.0 1.2111 1.2548
0.3 0.6 0.8 53.130102 1.2764 1.4172
0.4 0.8 0.6 36.869898 1.4181 1.7990
0.5 1.0 0.0 0.0 π / 2 2.2554

*  Obtained from the complete elliptic integral table (ref. 10).

Figure 2 shows the value of Q plotted as a function of crack aspect ratio a c2 with stress ratio 
σ σ*

Y  as a parameter. Remember that the values { a c2 = 0.25, a c2 = 0.5} listed in table 1 are 
respectively the aspect ratios of the actual initial surface cracks of the failed B-52B pylon old rear 
left and right hooks (ref. 7).

The Ko Operational Life Equation

This section describes the basics of the Ko closed-form operational life equations (refs. 5, 6). 
In the formulation of Ko operational life equations, it was assumed that all the flights last for the 
same duration of time and induce identical random loading spectra. By representing the random 
loading spectra with the equivalent-constant-amplitude loading spectra so that the  Walker crack 
growth equation (refs. 3, 4) may be applied, Ko (refs. 5, 6) formulated the closed-form operational 
life equation (as seen in equation (9) and derived in Appendix A) for the calculations of the number 
of flights, F1

* , permitted for each failure-critical aerostructural component.
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In equation (9), a a ac
p

1 1( )= + ∆ is the crack size at the end of the first flight, and ∆a1  is the 
amount of crack growth induced by the first flight. 	

In equation (9), the known quantities are: the Walker stress-intensity-factor exponent m (refs. 
3, 4), the load factor f  [determined from equation (2)], and the proof (initial) and operational (final) 
crack sizes { a ac

p
c
o,	 } [calculated respectively from equations {(4), (5)}]. The only unknown is the 

crack growth, ∆a1 , induced by the first flight. Therefore, the accuracy of the predicted operational 
flight life, F1

* , from equation (9) is hinged upon the method of calculations used in determining the 
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crack growth, ∆a1 . The step-by-step processes required to use the Ko operational life equation (9) 
are shown in the following flow chart.

The Ko Operational Life Theory Flow Chart
Flow Chart for Using Ko Operational Life Theory

Identify failure-critical

structural components.

Perform finite-element stress analysis to

locate the stress critical point and establish

the stress/load function !
*
= "V

*
, for the

critical stress point.

Determine the operational load factor, f,

from the worst cycle of the flight loading

spectrum through a computer search.

Calculate the proof load (initial) crack size, ac
p

, and

the operational limit crack size, ac
o
=
ac
p

f
2

, at the

critical stress point using the fracture mechanics.

Calculate the amount of crack growth, !a ,

using the Half-Cycle Crack Growth computer

program.

Calculate the number of operational flights,

F1
*

, from the Ko operational life equation.
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HALF-CYCLE CRACK GROWTH THEORY

In the calculations of fatigue crack growth under random loading, there are several existing 
methods (ref. 11). For example,

 
Peak count method 

Mean crossing peak count method

Range count method

Range-mean count method

Range pair count method

Level-crossing count method, and

Half-cycle method, etc. (ref. 11). 

After reviewing the basics of those different theories, the half-cycle theory was chosen for the 
present crack growth calculations. The reason being that the half-cycle theory accounts every half-
cycle of the random load spectrum without missing any secondary, small-amplitude half-cycles 
which do not even cross over the mean stress line (ref. 2). The second reason is that the predictions 
of fatigue life from the half-cycle theory compare fairly well with some existing experimental 
fatigue data (ref.11, pg. 211, ref. 12).

The half-cycle theory assumes that the amount of crack growth induced by each half-cycle of 
the random loading spectrum is considered as one-half of a complete cycle of a constant amplitude 
load spectrum with the same load amplitude. Figure 3 shows the resolutions of the random stress 
cycles into a series of half-cycles with different loading amplitudes (ref. 2). Under such assumption, 
the Walker crack growth equation may be used to calculate the incremental crack growth induced 
by each half-cycle with particular load amplitude. 

The Walker Crack Growth Equation

The Walker crack-growth equation for the constant amplitude load spectrum is given in 
equation (10) by  

da
dN

C K R C K Rm n m n m= − = − −( ) ( ) ( ) ( )max 1 1∆ (10)

where C, m, n are material constants. The mode I stress intensity factor, Kmax , mode I stress 
intensity amplitude, ∆K , and the stress ratio, R  are defined in equations (11), (12), and (13).

1)

2)

3)

4)

5)

6)

7)
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K AM
a

Qkmax max= σ π
(11)

∆K AM
a

Qk= −( )max minσ σ π
(12)

R =
σ
σ

min

max
(13)

where {σmax , σmin } are respectively the maximum and minimum stresses of the constant 
amplitude load spectrum. Equation (10) will now be modified to describe the half-cycle crack 
growth. 

The Half-Cycle Crack Growth Equation

In applying the half-cycle theory to calculate the crack growth induced by the random loading 
spectrum, it is assumed that the incremental amount of crack growth caused by each half-cycle 
with a particular load amplitude may be considered as a half-cycle of the constant amplitude 
loading spectrum with the same load amplitude. Therefore, the Walker crack growth equation, 
(10), may be used to calculate the incremental crack growth induced by each half-cycle of different 
load amplitude. 

If the crack growth increment, da in equation (10), is set equal to the crack growth increment, 
δai , induced by the i-th (i = 1, 2, 3, ….) half cycle (i.e., da = δai ), and the corresponding number 
of stress cycle increment, dN, is set equal to one half cycle (i.e., dN = 1/2), then the Walker crack-
growth equation (10) becomes the half-cycle crack growth equation for the calculations of half-
cycle crack growth increment,  δai . This half-cycle crack growth is expressed in equation (14).

δa
C

K R
C

K Ri i
m

i
n

i
m

i
n m= [ ] − = − −

2
1

2
1( ) ( ) ( ) ( )max ∆ (14)

where { ( )maxK i , ∆Ki , Ri } are respectively the values of { Kmax , ∆K , R } [See equations (11)–
(13)} associated with the i-th half-cycle given by equations (15), (16), and (17).

( ) ( )max maxK AM
a
Q

a a ai k i
i

c= = =−
−σ π 1

1 1 0....;.... pp i..when. =1 (15)
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∆K AM
a
Qi k i i
i= −[ ] −( ) ( )max minσ σ π 1 (16)

Ri
i

i
=

( )
( )

min

max

σ
σ (17)

where the subscript i (= 1, 2, 3, ….) is associated with the i-th half-cycle, and ai−1  is the 
cumulated crack size up to the (i –1)-th half-cycle. When i = 1, the crack size ai−1  becomes 
a a a ai c

p
− −= = =1 1 1 0 .

If N is any number of load cycles less than the total load cycles, N1 , induced by the first 
flight, then the amount of the partial crack growth, ∆a , induced by the N load cycles may be 
obtained from the crack growth equation (18) by summing up all the previous half-cycle crack 
growth increments, δai , up to 2N (not N) cycles as 

∆a a N Ni
i

N
= ≤( )

=
∑δ

1

2

1....;.... (18)

The summation process of the half-cycle crack growth according to equation (18) is 
graphically illustrated in fig. 4 (refs. 2–4). Equation (18) is used to calculate the increasing partial 
crack growths, ∆a , with increasing numbers of cycles, N, (or flight time steps) for generating 
the data set for plotting the crack growth curve (crack growth as a function of flight time) for the 
critical structural component. When N reached the total number of cycles, N1 , ( N N= 1 ), equation 
(19) will give the total amount of crack growth, ∆a1 , induced by the first flight. Namely,

( )∆ ∆a a aN N i
i

N

=
=

= = ∑1 1
1

2 1
δ (19)

The value of ∆a1 , calculated from equation (19) is to be used as input to equation (9) for the 
calculation of the number of operational flights F1

*  of the failure-critical structural component.

CRACK GROWTH COMPUTER PROGRAM

To carry out the summation of the half-cycle crack growth increment,δai , on the right-hand 
side of equation (18) or (19), a special crack growth computer program was written. (see Appendix 
B for details). To use this program and its results, it is necessary to perform the following steps.

Create a new data file containing only the required data from the time taxiing begins 
to the time of test vehicle drop (or the time of complete stop after captive touchdown) 

1)
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because a flight-test load data file is normally very big covering the ground-sitting 
portion. Keep in mind that the flight data is the load spectrum and not the stress cycles 
at the critical stress point.

Use a spike remove program to remove noises (spikes) from a flight load spectrum 
since spikes can add in erroneously big crack growth.

Run the crack growth program.  This program prompts for an unc3 format input 
filename. Then, it prompts for some important InterRange Instrumentation Group B 
(IRIGB) times in milliseconds of start taxiing, takeoff run, cruise power, and drop (or 
captive stop). After getting all required input data, the crack growth computer program 
performs the following key functions.

Read the input flight load spectrum. For each channel (associated with each .
		  hook) in the input file, the program picks up the maximum and minimum .
		  loads  for the i-th half-cycle, ( ) ( )max minV Vi i,	{ } . The half-cycle maximum .
		  load, ( )maxV i , is determined when the load is bigger than the two adjacent .
		  loads; and conversely, the minimum load, ( )minV i , of the same half-cycle .
		  is determined when load is smaller than the two adjacent loads. 

The loads ( ) ( )max minV Vi i,	{ }  and their corresponding IRIGB times are .
		  saved in asc2 format output files. The names for the asc2 files are simple. .
		  For channel vap, the filename is sigma_vap.asc2.

The loads ( ) ( )max minV Vi i,	{ }  are then converted into the corresponding .
		  maximum and minimum stresses, {( ) ( ) }max minσ σi i,	 , of the i-th half cycle .
		  using equation (1).

Calculate the half-cycle crack growth increment, δai , using equation (14), .
		  and summing up δai  over different numbers of load cycles, N (or a time .
		  step), to generate a data set of different partial crack growths, ∆a , from .
		  equation (18). 

Compute the total crack growth, ∆a1 , from equation (19) for the entire flight  
		  (from the time of start taxiing to the time of drop or captive stop) for  
		  approximately every minute. The times in minutes (zero at start taxiing  

		  time) and its corresponding ∆a1  are saved in an unc3 output file.

Determine the worst half-cycle from the loading spectrum during  
		  takeoff run and cruise power using the criterion of equation (3) and obtain  

		  the operational maximum load, V o
max , of the worst half-cycle.

Compute the load factor, f, from equation (2).

Calculate the number of operational flights, F1
∗  from equation (9) based on  

		  the first flight load data.

2)

3)

a .

b .

c .

d .

e.

f .

g.

h.
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Generate a summary report in text format. This file contains the name of  
		  each B-52B hook in the input file, its total crack growth for the first flight,  

		  ∆a1 , its number of operational flights, F1
* , its operational load factor f,  

		  its worst half cycle maximum load V o
max , its worst half-cycle minimum load,  

		  V o
min , and the corresponding IRIGB time. It also has the values of the  

		  numerator and the denominator that are used to calculate F1
* .

Print on screen the names of the crack growth output file and the  
		  summary file.

Convert the crack growth file to asc2 format and then to Mircosoft (Redmond, 
Washington) Excel format.

Graphically plot ∆a  as a function of flight time in minutes using Excel. 

OPERATIONAL LIFE ANALYSIS

The Ko aging theory with the half-cycle crack growth theory incorporated, will now be 
applied to calculate the operational life spans of the three B-52B pylon hooks, and the four Pegasus 
adapter pylon hooks carrying the HXLV.

Two types of flights were analyzed: 1) air-launching flight, 2) captive flight. The air-launching 
flight lasted for 106 minutes, counted from the time of B-52B break release for taxiing until the 
time of air launching (dropping of the HXLV). The captive flight (no air-launching of the HXLV) 
lasted for 191 minutes, counted from the time of B-52B break release for taxiing and takeoff until 
the time of complete stop after captive landing.

The purpose of the analysis is to compare the crack growths, ∆a1 , induced by the first air-
launching and first captive flight, and find out how many air-launching flights will be consumed by 
each captive flight. The actual flight loading data were used for the operational life calculations.

The B-52B and Pegasus Pylon Hooks

Figures 5–10, taken from reference 8, respectively show the geometry of B-52B pylon 
hooks (figs. 5, 7), and a typical Pegasus adapter pylon hook (fig. 9). The tangential tensile stress 
distribution over the inner boundary of each hook, obtained from finite-element stress analysis 
(figs. 6, 8, 10), is also shown, together with the locations of the critical stress points and the stress/
load relationships indicated. The stress/load coefficients, η , for B-52B pylon hooks and Pegasus 
adapter pylon hooks established from the finite-element stress analysis are summarized in table 2 
(taken from ref. 8).

i.

j.

4)

5)
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Table 2. Proof loads, V* , and stress/load coefficients, η , 
for B-52B pylon hooks and Pegasus adapter pylon hooks.

Hooks V*, lb η,.ksi/lb

VA 36,500 7.3522×10-3

VBL 57,819 5.8442×10-3

VBR 57,819 5.8442×10-3

VPFL 75,000 2.4459×10-3

VPFR 75,000 2.4459×10-3

VPRL 75,000 2.4459×10-3

VPRR 75,000 2.4459×10-3

The stress/load coefficients, η , listed in table 2 are to be input to the crack-growth computer 
program to convert the loading spectrum of each hook into the stress cycles associated with the 
critical stress point using equation (1).

Flight Load Spectra

Figures 11–17 respectively show the flight load spectra of the B-52B pylon hooks and the 
Pegasus adapter pylon hooks carrying the HXLV during the takeoff run of the first air-launching 
flight. The location of the worst half-cycle and the value of the load factor, f, are indicated in 
each figure. The worst half-cycle was located by means of the crack growth computer program 
searching over the takeoff run portion of each flight load spectrum, and then finding the value of 
the operational maximum load, V o

max  (=σ ηmax
o / ), of the worst half-cycle with minimum load 

ratio or stress ratio, Ro  expressed in equation (20),

R
V
V

V
V

o
o

o

o

o

o

o= = =
σ
σ

η
η

min

max

min

max

min

max
=..miniimum (20)

The value of V o
max  (or σmax

o ) was then used to calculate the load factor, f, for each hook using 
equation (2).

Crack Growth Calculations

The material properties of B-52B pylon hooks and Pegasus adapter pylon hooks listed in 
Appendix C were used for the crack growth calculations. In the present crack growth calculations, 
the surface crack (A = 1.12) at the critical stress point of each hook was assumed to be a very 
shallow ( Mk =1) semi-elliptic surface crack. Only one aspect ratio, a/2c = 1/4 (Q = 1.2548, table 
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1) was considered. As mentioned earlier, the value a/2c = 1/4 is the aspect ratio of the microsurface 
crack which caused the failure of a B-52B pylon old rear left hook (ref. 7). The crack-growth 
computer program was then used to read the values of {( ) ( ) }max minV Vi i,	  for each half-cycle over 
the loading spectrum, and converted them into the corresponding stresses {( ) ( ) }max minσ σi i,	  
through equation (1) using the η  values given in table 2 to calculate the half-cycle crack growth 
increment, δai , using equation (14). Finally, δai  are summed up to different desired cycles (or 
time steps) to obtain partial crack growth, ∆a , using equation (18) for generating a data set for 
plotting the crack growth curve for each hook. This process is graphically illustrated in fig. 3 .
and 4.

Number of Operational Flights

After the total crack growth, ∆a1 , induced by the first flight is calculated from equation (19) 
with the aid of the crack-growth computer program, the operational life equation (9) was then used 
to calculate the safe number of operational flights, F1

* , allowed for the B-52B pylon hooks and 
Pegasus adapter pylon hooks to carry the HXLV for air-launching and captive flights.

RESULTS

The following sections discuss the results of the operational life analysis of the B-52B pylon 
hooks and the Pegasus adapter pylon hooks carrying the HXLV. This analysis uses the Ko aging 
theory and is aided by the half-cycle crack growth calculation method.

Crack Growth Curves

The crack growth curve is a very powerful tool for visually observing the crack growth 
behavior at the critical stress point of each failure-critical component. The crack growth curve for 
each hook was generated for the following two types of flights: air-launching flight and captive 
flight. 

Air-Launching Flight

Figures 18–20 respectively show the crack growth curves generated for the three B-52B 
pylon hooks. Those crack growth curves were calculated from equation (18) with the crack growth 
summation carried out by the crack-growth computer program using the first air-launching flight 
data. Notice that the crack growth rate for each hook is quite rapid during taxiing because of ground 
effect, and became more accelerated (illustrated by a steeper slope on the graph) during the takeoff 
run as the ground-induced vibrations intensified. Once airborne, the ground effect diminished and, 
therefore, the crack growth rate slowed down considerably and stayed relatively constant (except 
for encountering wind gusts) until air-launching. The crack growth curve for the B-52B front hook 
(VA, fig. 18) exhibits the steepest takeoff-run slope as compared with the B-52B two rear hooks 
(VBL and VBR, figs. 19, 20). The rapid crack growth of the B-52B front hook during the takeoff 
run could be attributed in part to the overhanging effect of the X-43, which is at a forward distance 
from the front hook. For the three B-52B pylon hooks, (VA, VBL, VBR), taxiing and takeoff runs 
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combined induced approximately 65, 51, and 41 percent of the respective total crack growth, .
∆a1 ,per flight.

Figures 21–24 respectively show the crack growth curves for the four Pegasus adapter pylon 
hooks (VPFL, VPFR, VPRL, and VPRR). Those crack growth curves were generated from the 
crack growth computer program in carrying out the summation in equation (18) using the first 
air-launching-flight load data. The crack growth behavior of the Pegasus adapter pylon hooks is 
similar to that of the B-52B hooks, but with lower crack growth rates, especially during cruise 
flight. For the four Pegasus adapter pylon hooks (VPFL, VPFR, VPRL,  and VPRR), the taxiing 
and takeoff run combined induced approximately 45, 60, 64, and 41 precent of the respective total 
crack growth, ∆a1 , per flight.

Captive Flight

Figures 25–27 respectively show the crack growth curves generated for the three B-52B pylon 
hooks (VA, VBL, and VBR) using the first captive-flight data. These crack growth curves were 
calculated from equation (18) with the crack growth summation carried out by the crack-growth 
computer program. Notice that, for each B-52B pylon hook, the amounts of crack growth and the 
crack growth rates (shown by slopes on the graphs) during the takeoff phase and the landing phase 
are quite similar. During the smooth cruise phase, the B-52B airplane encountered only two minor 
wind gusts (gust 1 and gust 2). The cruising crack growth rate of the front hook (VA, fig. 25) is 
much slower than those of the two rear hooks (VBL and VBR, figs. 26, 27). At the end of the cruise, 
three gusts were encountered by the B-52B airplane. The most severe, gust 5 coinciding with the 
B-52B maneuver, caused the crack growth rate for each hook to increase rapidly (portrayed by 
steeper slopes). For these three hooks, the fastest crack growth rates occurred during both the 
takeoff phase and landing phase because of severe ground effects. For the three B-52 hooks (VA, 
VBL, VBR), the takeoff phase and the landing phase combined contributed approximately 67, 54, 
and 51 percent of the respective total crack growth, ∆a1 , per flight. The crack growth rate of the 
outboard right rear hook (VBR) during cruising flight is slightly faster than that of the inboard left 
rear hook (VBL). This phenomenon was also observed in the air-launching flight-test case (figs. 
19, 20). 

Figures 28–31 respectively show the crack growth curves generated for the Pegasus adapter 
pylon hooks (VPFL, VPFR, VPRL, and VPRR) by the crack growth computer program. The 
program carried out the summation of half-cycle crack growths, calculated by equation (18), 
associated with the first captive-flight load spectra. The crack growth curves of the Pegasus adapter 
pylon hooks are similar to those of the B-52B hooks, but with lower crack growth rates, especially 
during cruise flight. For the four Pegasus adapter pylon hooks (VPFL, VPFR, VPRL, and VPRR), 
the takeoff phase and landing phase combined induced nearly 51, 59, 71, and 51 percent of the 
respective total crack growth, ∆a1 , per flight.   
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Number of Operational Flights

The number of possible operational flights for each of the B-52B pylon hooks and of Pegasus 
adapter pylon hooks (carrying the HXLV) were calculated from the operational life equation, (9). 
Flight test data was obtained from two types of test flights, air-launching and captive.

Air-Launching Flight

For the air-launching flight, which lasted for 106 minutes, the key input and output data 
generated for different hooks are listed in table 3 for crack geometry a c/ 2 = 0.25 (Q = 1.2548).

Table 3. Key data for the B-52B airplane carrying the Hyper-X launch vehicle.
(total weight: 40,000 lb); 106-min air-launching flight; a c/ 2 = 0.25 (Q = 1.2548).

Hooks V*, lb V o
max , lb f ac

p , in ∆a1, in F1
*, flights

VA 36,500 18,065 0.4949 0.0691 1.9258×10-4 304
VBL 57,819 23,227 0.4017 0.0429 2.5367×10-4 186†

VBR 57,819 18,906 0.3270 0.0429 2.5734×10-4 203

VPFL 75,000 34,367 0.4582 0.1455 1.6680×10-4 873
VPFR 75,000 34,623 0.4616 0.1455 1.8326×10-4 790
VPRL 75,000 21,179 0.2824 0.1455 1.4053×10-4 1,323††

VPRR 75,000 21,413 0.2855 0.1455 1.5441×10-4    1,200
† Shortest operational life, †† Longest operational life

Table 3 shows that, among the three B-52B pylon hooks, the rear left hook (VBL) has the 
shortest life (186 flights), and the front hook (VA) has the longest life (304 flights). Although the 
crack growths for VBL and VBR are quite close, the higher value of f for VBL (f = 0.4017) caused 
the operational life of VBL to be shorter than VBR (f = 0.3270).

Among the four Pegasus pylon adapter hooks, the front right hook (VPFR) has the shortest 
life (790 flights), and the rear left hook (VPRL) has the longest life (1323 flights).

Captive Flight

For the captive flight which had a duration of 191 minutes, the resulting key input and output 
data for different hooks are listed in table 4 for a c/ 2 = 0.25 (Q = 1.2548).
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Table 4. Key data for the B-52B airplane carrying the Hyper-X launch vehicle.
(total weight: 40,000 lb); 191-min captive flight; a c/ 2 = 0.25 (Q = 1.2548).

Hooks V*, lb V o
max , lb f ac

p , in ∆a1, in F1
*, flights

VA 36,500 17,171 0.4704 0.0691 6.7226×10-4   91
VBL 57,819 21,616 0.3739 0.0429 7.4446×10-4    83†

VBR 57,819 17,875 0.3092 0.0429 5.8556×10-4   92

VPFL 75,000 33,482 0.4464 0.1455 2.1151×10-4 477
VPFR 75,000 34,137 0.4552 0.1455 3.3859×10-4 433
VPRL 75,000 22,565 0.3009 0.1455 3.1070×10-4   586††

VPRR 75,000 21,087 0.2812 0.1455 3.3090×10-4 563
† Shortest operational life, †† Longest operational life

Table 4 shows that, like the air-launching flight, the life of the B-52B pylon rear left hook 
(VBL) at 83 flights is shorter than the identical rear right hook (VBR) at 92 flights because of 
higher values of { ∆a1 , f}. Among the four identical Pegasus pylon hooks, the front right hook has 
the shortest life (433 flights), and the rear left hook (VPRL) has the longest life (586 flights). Also, 
note from table 4 that crack growths, ∆a1 , induced by the captive flight are approximately 2–3 
times larger than ∆a1  induced by the air-launching flight, therefore, the flight life of each hook is 
reduced.

Table 5 compares the operational flight life of each hook undergoing air-launching flight 

and captive flight. The ratio 
( )

( )

*

*
F

F
1

1

Air launching

Captive

−  will then give the number of air-launching flights 

consumed by each captive flight.
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Table 5. Summary of available number of flights: B-52B carrying Hyper-X launch 
vehicle (total weight: 40,000 lb); 106-min air-launching flight; 191 min captive flight.

Hook

F1
*, flights Number of air-launching flights 

consumed by each captive flight

Air-launching
(A)

Captive
(C)

(A)
(C)

VA   304 91 3.34 (≈ 3)
VBL    186† 83† 2.24 (≈ 2)
VBR   203 92 2.21 (≈ 2)

VPFL   873 477 1.83 (≈ 2)
VPFR   790 433 1.82 (≈ 2)
VPRL 1,323†† 586†† 2.26 (≈ 2)
VPRR 1,200 563 2.13 (≈ 2)

† Shortest operational life, †† Longest operational life

Note from table 5 that each captive flight consumed 2–3 air-launching flights (depending on 
the type of hooks) because it had a longer flight duration, encountered more air gusts, experienced 
aircraft maneuvers, and had a landing phase.

CONCLUSIONS

The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory 
for accurate crack growth calculations, which would thereby improve the accuracy of predictions 
of operational life of failure-critical aerostructural components. The unified theories were then 
used to calculate the number of operational flights permitted for B-52B pylon hooks and Pegasus 
adapter pylon hooks carrying the HXLV. The highlights of the operational life analysis are: 

A new crack growth computer program was written to remove the noises, to read the 
maximum and minimum loads of each half-cycle of the random-flight loading spectra, 
and then to calculate the crack growths based on the half-cycle crack growth theory.

The crack growths calculated from the half-cycle crack growth program should be 
quite accurate because every half-cycle of each random loading spectrum was counted, 
including those secondary mini-amplitude half-cycles which did not even cross over 
the mean stress lines.

The crack growth curve generated for each hook using the newly written crack growth 
computer program is a powerful practical tool for visualization of crack growth behavior 
at the critical point of each hook during all phases of flight.

The crack growth rates are most rapid during the takeoff phase (brake release for taxiing 

1)

2)

3)

4)
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and takeoff run) and landing phase (touchdown and taxiing to stop) because of ground 
effect, and induced a large percentage of the total crack growth per flight.

Once airborne and during cruise, the crack growth rate decreased significantly, and 
stayed almost constant, except for encountering wind gusts and aircraft maneuvers.

For air-launching flight (the B-52B airplane carrying and launching the HXLV), taxiing 
and takeoff combined induced approximately 41–65 precent of the total crack growth 
per flight depending on the types of hooks. The B-52B pylon rear left hook (VBL) has 
the shortest operational life of 186 flights, and the Pegasus pylon adapter rear left hook 
(VPRL) has the longest operational life of 1323 flights. 

For captive flight (the B-52B airplane carrying the HXLV), the takeoff phase and the 
landing phase combined induced approximately 51–71 percent of the total crack growth 
per flight depending on the types of hooks. The B-52B pylon rear left hook (VBL) has 
the shortest operational life of 83 flights, and the Pegasus pylon adapter rear left hook 
(VPRL) has the longest operational life of 586 flights.

Each captive flight is equivalent to 2–3 air-launching flights (depending on the type of 
hooks) because of longer flight time, encountering more wind gusts, intended aircraft 
maneuvers, and an additional captive landing phase.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, October 12, 2006

5)

6)

7)

8)
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APPENDIX A 
OPERATIONAL LIFE EQUATIONS

The original Ko closed-form operational life equation (refs. 5, 6) has the mathematical form 
given by equation (A1)
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From equation (5), the crack-ratio/load-factor relationship is established as seen in .
equation (A2).

a
a f

c
o

c
p =

1
2 (A2)

As seen in equation (A3) the crack size at the end of the first flight, a1 , may be expressed in 
terms of the crack growth, ∆a1 , for the first flight as

a a ac
p

1 1= + ∆ (A3)

In light of equations (A2) and (A3), equation (A1) may be written in more compact form in 
terms of f  in equation (A4)
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which may be rewritten in equation (A5) as
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which is equation (9), the Ko operational life equation, in the text.
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APPENDIX B  
CRACK GROWTH COMPUTER PROGRAM

Start crackGrowth

program

Enter IRIGB times of

start taxiing, takeoff, cruise,

and drop/stop

Create deltaa and summary

output filenames from

input filename

Initialize variables and

structures

Calculate constants

Yes

No

All IRIGB

times entered

correct?

Enter input filename

(unc3 format)

Input file

exists?

No

Yes

Print error message and exit

Print error message and exit

Calculate number of data

blocks in input file

APPENDIX B---CRACK GROWTH COMPUTER PROGRAM
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Create asc2 files for each

channel in input file

Determine number of times

to read data from start

taxiing to drop/stop

Calculate the operational

load factor f and

the number of operational

flights F1
*

Is the number of

times to read data

reached?

For each channel in input file

1. Read data

2. Determine Vmax and Vmin and

write them to asc2 files

3. Calculate Δa and write data

to deltaa output file

NoYes

Close all files

Open & write data into text

summary file. Then close file

End crackGrowth

program

Skip all data before start

taxiing time
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/*****************************************************************************

* Tittle: crackGrowth.c -- Crack Growth Program *

* Written by: Van T. Tran *

* Organization: Aerostructures Branch, RS, NASA Dryden Flight Research Center *

* Date: August 3, 2004 *

* *

* Introduction: *

* This program is written in C programming language. It only works with flight test data *

* files that have unc3 format. First, it prompts for an input filename. Then, it prompts *

* for some important InterRange Instrumentation Group B (IRIGB) times in milliseconds. *

* These IRIG times consist of start taxiing, takeoff run, cruise power, and drop/stop. After *

* getting all entered inputs, it performs several tasks for each channel in the input file such *

* as calculating the accumulated crack growth size, the number of operational flights, *

* the operational load factor, creating output files, and generating a summary report. *

* When it finishes, it prints on the screen the unc3 format output filename and the text *

* summary filename. *

* *

* There are different data formats at Dryden Flight Research Center. The text formats *

* consist of asc1 (ASCII 1) and asc2 (ASCII 2). The binary formats include *

* unc2 (uncompressed 2), unc3 (uncompressed 3), cmp3 (compressed 3), and *

* cmp4 (compressed 4). To convert a file from one format to another format, use *

* getdata and/or getdata3 programs. *

* *

* Inputs: *

* An unc3 format input file contains loading spectra. *

* *

* Outputs: *

* 1. unc3 output filename = input filename_deltaa.unc3. This file contains IRIGB times *

* and the corresponding crack growths, Δa, for all channels in the input file. Δa is *

* calculated using the half-cycle crack growth theory. *

* *

* 2. txt output filename = input filename_summary.txt. This file contains the following *

* information for all channels in the input file: *

* *

* - Δa1, the final sum of crack growths *

* *

* - F
1

*
, the number of operational flights, calculated by using Ko operational *

* life equation. *

* *

* - f, the operational load factor. *

* *

* - the worst half-cycle 0

max
V , 0

min
V , and the corresponding IRIGB time. *

* *

* - the numerator and the denominator used in calculation of F
1

*
. *

* *

* 3. asc2 output filename = sigma_channel name.asc2. Each sigma file contains IRIGB *
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* time, half-cycle
max
V and

min
V for each channel in the input file. *

* *

* Procedure to use crackGrowth program: *

* *

* 1. Use getdata3 to convert flight test data file to asc2 format. *

* 2. Use vi, xemacs or textedit editor to filter the data so that the input file contains only *

* data from start taxiing time to drop/stop time. *

* 3. Use getdata3 to convert the filtered data file to unc3 format input file. *

* 4. Use any spike remove program to remove spikes in the input file. *

* 5. Run crackGrowth program by type in crackGrowth at the command line. *

* 6. Enter all required data as prompted on screen. *

* 7. Program crackGrowth is done when complete message is displayed on screen. *

* 8. Use getdata3 program to convert output file xxxx_deltaa.unc3 to asc2 format. *

* 9. Convert asc2 format to excel format *

* 10. Use Excel to plot the data *

* 11. Use vi, xemacs or textedit editor to read xxxx_summary.txt file. *

* 12. Use vi, xemacs or textedit editor to read sigma_xxxx.asc2 files. *

* *

* Initial Release: November 2004 *

* *

****************************************************************************/

/* Header Files */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/ddi.h>

#include <math.h>

/* Library subroutines */

double sqrt(double x);

double pow(double x, double y);

/* Define constants */

#define FALSE 0

#define TRUE 1

#define ERROR -1

#define NAMES_SIZE 16

#define TITLE_LENGTH 80

#define FNAME_LENGTH 200
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#define NUM_BYTES 4

#define MAXCHANS 30

#define MAXBUFS 5000

#define MAXSIZE 512

#define NUM_SECONDS 60

#define NONE 0

#define MIN 1

#define MAX 2

#define EQUAL 3

#define A 1.12

#define Mk 1

#define Q 1.2548

#define PI 3.14159265359

#define Eta_FRONT_HOOK 0.0073522

#define Eta_REAR_HOOK 0.0058442

#define Eta_PEGASUS 0.0024459

#define Vstar_FRONT_HOOK 36500.0

#define Vstar_REAR_HOOK 57819.0

#define Vstar_PEGASUS 75000.0

#define Kic_FRONT_HOOK 125.0

#define Kic_REAR_HOOK 124.0

#define Kic_PEGASUS 124.0

#define C_FRONT_HOOK 0.00000000000922

#define C_REAR_HOOK 0.00000000002944

#define C_PEGASUS 0.00000000002944

#define m_FRONT_HOOK 3.6

#define m_REAR_HOOK 3.24

#define m_PEGASUS 3.24

#define n_FRONT_HOOK 2.16

#define n_REAR_HOOK 1.69

#define n_PEGASUS 1.69

#define f_VA 0.4656

#define f_VBL 0.3720

#define f_VBR 0.3328

#define f_VPFL 0.4585

#define f_VPFR 0.4747

#define f_VPRL 0.2607
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#define f_VPRR 0.2966

/* Define structure */

struct buffer_struct

{

unsigned long irig_time; /* IRIG B time */

float euc_data[MAXCHANS]; /* EUC data */

};

/* getdata format record format */

struct

{

short size;

char text[8];

char type[8];

char ver[8];

}

format = {sizeof(format), "format ", "unc 3 ", ".1 "};

/* getdata nChans record format */

struct

{

short size;

char text[8];

short dummy;

short count;

}

nchans = {sizeof(nchans), "nChans ", 0, 0};

/* getdata timekey record format */

struct

{

short size;

char text[8];

short dummy;

short count;

}

timekey = {sizeof(timekey), "timekey ", 0, 1000};

/* getdata title record format */

struct
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{

short size;

char text[8];

char titl[TITLE_LENGTH];

}

title = {sizeof(title), "title "};

/* getdata names record format */

struct

{

short size;

char text[8];

}

names = {0, "names "};

/* getdata endhead record format */

struct

{

short size;

char text[8];

}

endhead = {sizeof(endhead), "endHead "};

/* Define variables */

char input_file[FNAME_LENGTH];

char output_file1[FNAME_LENGTH];

char output_file2[FNAME_LENGTH];

char f_vap[FNAME_LENGTH];

char f_vas[FNAME_LENGTH];

char f_vbrp[FNAME_LENGTH];

char f_vbrs[FNAME_LENGTH];

char f_vblp[FNAME_LENGTH];

char f_vbls[FNAME_LENGTH];

char f_vprrp[FNAME_LENGTH];

char f_vprrs[FNAME_LENGTH];

char f_vprlp[FNAME_LENGTH];

char f_vprls[FNAME_LENGTH];

char f_vpfrp[FNAME_LENGTH];

char f_vpfrs[FNAME_LENGTH];

char f_vpflp[FNAME_LENGTH];

char f_vpfls[FNAME_LENGTH];
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char sigma_txt[MAXCHANS][FNAME_LENGTH];

char chan_name[MAXCHANS][NAMES_SIZE];

char asc2_name[MAXCHANS][26];

FILE *fpin;

FILE *fpout1;

FILE *fpout2;

FILE *fp_sigma_txt[MAXCHANS];

struct buffer_struct data_buffer;

struct buffer_struct data_write1;

struct buffer_struct data_write2;

struct buffer_struct data_read[MAXBUFS];

double C_OVER_2[MAXCHANS];

double deltaa[MAXCHANS][MAXBUFS], sum_a[MAXCHANS],

sum_deltaa[MAXCHANS];

double apc[MAXCHANS], apc_FRONT_HOOK, apc_REAR_HOOK, apc_PEGASUS;

float buff_endfile[MAXSIZE];

float calc_euc[MAXBUFS], temp_euc[MAXBUFS];

float stress_coef[MAXCHANS], Kic[MAXCHANS], m[MAXCHANS], n[MAXCHANS];

float Vstar[MAXCHANS], prev_value[MAXCHANS], end_value[MAXCHANS];

float min_max_value[MAXCHANS][MAXBUFS], last_data[MAXCHANS];

float f[MAXCHANS], Vmax[MAXCHANS], Vmin[MAXCHANS], Ri_min[MAXCHANS];

float numerator[MAXCHANS], denominator[MAXCHANS];

int num_chans, names_size;

int buf_size, normal_buf;

int max_data_read, int_flight[MAXCHANS];

long unc3_endfile = -1;

short first_time, last_data_read;

short prev_type[MAXCHANS], end_type[MAXCHANS], first_type[MAXCHANS];

short do_calc[MAXCHANS], write_index[MAXCHANS];

short last_index[MAXCHANS];

short processed_done[MAXCHANS];

unsigned long fp, fp_eof, fp_skip, fp_read, data_buff_size, num_data_blocks;

unsigned long starting_time_entered, starting_time;

unsigned long drop_time_entered, drop_time, dt;

unsigned long takeoff_time_entered, takeoff_time;

unsigned long cruise_time_entered, cruise_time;

unsigned long time_deltaa;

unsigned long num_blocks, num_read;
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unsigned long min_max_time[MAXCHANS][MAXBUFS], last_data_time[MAXBUFS],

Tmax[MAXCHANS];

/* Subroutines used by the main program */

void get_header_info();

void write_asc2_header();

void skip_data();

void read_data();

void determine_max_min();

void calculate_deltaa();

void calculate_flights();

void generate_summary();

main(argc, argv)

int argc;

char *argv[];

{

char name[NAMES_SIZE];

int i, j, k, l;

double A_sqre, Mk_sqre, Q_over_PI, Kic_sqre, load_sqre;

/* Screen display */

printf("\ncrackGrowth program written by : Van T. Tran");

printf("\nNASA/Dryden Flight Research Center, Code RS");

printf("\nInitial Release - November 2004\n\n");

/* Prompt user for the input filename */

printf("crackGrowth: Enter input file name ");

scanf("%s", input_file);

/* Check if input filename exists */

if ((fpin = fopen(input_file, "r")) == NULL)

{

printf("\nError in openning input file %s\n\n", input_file);

printf("\ncrackGrowth program terminated\n\n");

exit (1);

}

/* Need start taxiing time in miliseconds */

printf("\ncrackGrowth: Enter Irigb starting time in msec (integer) ");
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scanf("%d", &starting_time_entered);

printf("Entered Irigb starting time is %d\n\n", starting_time_entered);

starting_time = starting_time_entered * 10;

/* Need takeoff run time in miliseconds */

printf("crackGrowth: Enter Irigb takeoff time in msec (integer) ");

scanf("%d", &takeoff_time_entered);

printf("Entered Irigb takeoff time is %d\n\n", takeoff_time_entered);

takeoff_time = takeoff_time_entered * 10;

/* Need cruise power time in miliseconds */

printf("crackGrowth: Enter Irigb cruise time in msec (integer) ");

scanf("%d", &cruise_time_entered);

printf("Entered Irigb cruise time is %d\n\n", cruise_time_entered);

cruise_time = cruise_time_entered * 10;

/* Need drop or stop time in miliseconds */

printf("crackGrowth: Enter Irigb drop or stop time in msec (integer) ");

scanf("%d", &drop_time_entered);

printf("Entered Irigb drop time is %d\n\n", drop_time_entered);

drop_time = drop_time_entered * 10;

printf("crackGrowth program is running ...Do not interrupt ...\n");

strcpy(output_file1, input_file);

strcpy(output_file2, input_file);

/* Check if the input file has the extension of .unc3 */

if (strstr(input_file, ".unc3") != NULL)

{

j = strlen(output_file1) - 5;

strcpy(&output_file1[j], "_deltaa.unc3");

strcpy(&output_file2[j], "_summary.txt");

}

else

{

strcat(output_file1, "_deltaa.unc3");

strcat(output_file2, "_summary.txt");

}

/* Write the output filename */
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if ((fpout1 = fopen(output_file1, "w")) == NULL)

{

printf("\nError in creating output file %s!", output_file1);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

if ((fpout2 = fopen(output_file2, "w")) == NULL)

{

printf("\nError in creating output file %s!", output_file2);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

/* Initialize variables and structures */

bzero((char *) (&apc), sizeof(apc));

bzero((char *) (&data_read), sizeof(data_read));

bzero((char *) (&data_write1), sizeof(data_write1));

bzero((char *) (&data_write2), sizeof(data_write2));

bzero((char *) (&buff_endfile), sizeof(buff_endfile));

bzero((char *) (&write_index), sizeof(write_index));

bzero((char *) (&stress_coef), sizeof(stress_coef));

bzero((char *) (&deltaa), sizeof(deltaa));

bzero((char *) (&sum_a), sizeof(sum_a));

bzero((char *) (&sum_deltaa), sizeof(sum_deltaa));

bzero((char *) (&do_calc), sizeof(do_calc));

bzero((char *) (&chan_name), sizeof(chan_name));

bzero((char *) (&asc2_name), sizeof(asc2_name));

bzero((char *) (&prev_type), sizeof(prev_type));

bzero((char *) (&Vmax), sizeof(Vmax));

bzero((char *) (&Vmin), sizeof(Vmin));

bzero((char *) (&numerator), sizeof(denominator));

num_chans = 0;

num_blocks = 0;

num_read = 0;

first_time = TRUE;

last_data_read = FALSE;

A_sqre = (double) A*A;

Mk_sqre = (double) Mk*Mk;

Q_over_PI = (double) Q/PI;

Kic_sqre = (double) Kic_FRONT_HOOK*Kic_FRONT_HOOK;

load_sqre = (double) Eta_FRONT_HOOK*Eta_FRONT_HOOK*
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Vstar_FRONT_HOOK*Vstar_FRONT_HOOK;

apc_FRONT_HOOK = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

Kic_sqre = (double) Kic_REAR_HOOK*Kic_REAR_HOOK;

load_sqre = (double) Eta_REAR_HOOK*Eta_REAR_HOOK*

Vstar_REAR_HOOK*Vstar_REAR_HOOK;

apc_REAR_HOOK = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

Kic_sqre = (double) Kic_PEGASUS*Kic_PEGASUS;

load_sqre = (double) Eta_PEGASUS*Eta_PEGASUS*

Vstar_PEGASUS*Vstar_PEGASUS;

apc_PEGASUS = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

/* Move the file position indicator to the end of input file */

fseek(fpin, 0, SEEK_END);

/* Get the pointer at the end of file */

fp_eof = ftell(fpin);

fp_eof -= NUM_BYTES;

/* Move the file position indicator to the beginning of input file */

fseek(fpin, 0, SEEK_SET);

fp = ftell(fpin);

/* Call get_header_info subroutine */

get_header_info();

/* Calculate the number of data blocks in the input file */

num_data_blocks = (fp_eof - fp) / data_buff_size;

/* Skip all data before start taxiing time */

skip_data();

/* Determine the number of times to read data */

max_data_read = (num_data_blocks / normal_buf) + 1;

/* Create an asc2 format file for each channel */

for (i = 0; i < num_chans; i++)
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{

if (do_calc[i] == TRUE)

{

if ((fp_sigma_txt[i] = fopen(sigma_txt[i], "w")) == NULL)

{

printf("\nError in creating text file %s!", fp_sigma_txt[i]);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

}

}

/* Create asc2 header for each channel */

write_asc2_header();

/* Read data, determine max & min, and calculate crack growth */

for (i = 0; i < max_data_read; i++)

{

if (last_data_read == FALSE)

{

read_data();

determine_max_min();

calculate_deltaa();

}

}

/* Write end of file to the output file */

fwrite(&unc3_endfile, sizeof(long), 1, fpout1);

fwrite(&buff_endfile, sizeof(float)*MAXSIZE, 1, fpout1);

/* Close all files */

fclose(fpout1);

fclose(fpin);

for (i = 0; i < num_chans; i++)

{

if (do_calc[i] == TRUE)

{

fclose(fp_sigma_txt[i]);

}

}

printf("\n");
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/* Calculate the number of operational flights */

calculate_flights();

/* Generate a summary text file */

generate_summary();

/* Close the summary text file */

fclose(fpout2);

/* Print the end message */

printf("\ncrackGrowth program completed successfully!\n");

printf("Crack growths are in %s\n", output_file1);

printf("Summary is in %s\n\n\n", output_file2);

}

/*****************************************************************************

* Subroutine get_header_info() *

* *

* Description: *

* This subroutine reads the header information in the unc3 input file and write the header *

* information to the unc3 output file. The unc3 output file contains calculated crack *

* growths and times in minutes for all channels. For each channel, all important constants *

* are calculated and an asc2 format output file is generated. The asc2 filename has *

* sigma_ following by the channel name and extension asc2. For channel vap, the asc2 *

* filename is sigma_vap.asc2. *

* *

****************************************************************************/

void get_header_info()

{

int i;

short str_loc;

/* Read and write header information */

fread(&format, sizeof(format), 1, fpin);

fwrite(&format, sizeof(format), 1, fpout1);

/* Read the number of input channels and figure out the data buffer size */

fread(&nchans, sizeof(nchans), 1, fpin);

fwrite(&nchans, sizeof(nchans), 1, fpout1);
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num_chans = nchans.count;

data_buff_size = num_chans * sizeof(float) + NUM_BYTES;

fread(&timekey, sizeof(timekey), 1, fpin);

fwrite(&timekey, sizeof(timekey), 1, fpout1);

fread(&title, sizeof(title), 1, fpin);

fwrite(&title, sizeof(title), 1, fpout1);

names_size = num_chans * NAMES_SIZE + 10;

/* Read and write channel names */

fread(&names, names_size, 1, fpin);

fwrite(&names, names_size, 1, fpout1);

str_loc = sizeof(names.text);

/* Calculate and determine constants and create sigma filenames */

for (i = 0; i < num_chans; i++)

{

strncpy(chan_name[i], &names.text[str_loc], NAMES_SIZE);

str_loc += NAMES_SIZE;

if (strstr(chan_name[i], "vap") != NULL)

{

stress_coef[i] = Eta_FRONT_HOOK;

Vstar[i] = Vstar_FRONT_HOOK;

Kic[i] = Kic_FRONT_HOOK;

apc[i] = apc_FRONT_HOOK;

C_OVER_2[i] = C_FRONT_HOOK / 2.0;

m[i] = m_FRONT_HOOK;

n[i] = n_FRONT_HOOK;

f[i] = f_VA;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vap.asc2");

}

else if (strstr(chan_name[i], "vas") != NULL)

{

stress_coef[i] = Eta_FRONT_HOOK;

Vstar[i] = Vstar_FRONT_HOOK;

Kic[i] = Kic_FRONT_HOOK;

apc[i] = apc_FRONT_HOOK;

C_OVER_2[i] = C_FRONT_HOOK / 2.0;

m[i] = m_FRONT_HOOK;
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n[i] = n_FRONT_HOOK;

f[i] = f_VA;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vas.asc2");

}

else if (strstr(chan_name[i], "vbrp") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbrp.asc2");

}

else if (strstr(chan_name[i], "vbrs") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbrs.asc2");

}

else if (strstr(chan_name[i], "vblp") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;
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strcpy(sigma_txt[i], "sigma_vblp.asc2");

}

else if (strstr(chan_name[i], "vbls") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbls.asc2");

}

else if (strstr(chan_name[i], "vprrp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprrp.asc2");

}

else if (strstr(chan_name[i], "vprrs") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprrs.asc2");

}

else if (strstr(chan_name[i], "vprlp") != NULL)

{
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stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprlp.asc2");

}

else if (strstr(chan_name[i], "vprls") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprls.asc2");

}

else if (strstr(chan_name[i], "vpfrp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfrp.asc2");

}

else if (strstr(chan_name[i], "vpfrs") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;
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C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfrs.asc2");

}

else if (strstr(chan_name[i], "vpflp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpflp.asc2");

}

else if (strstr(chan_name[i], "vpfls") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfls.asc2");

}

else

{

do_calc[i] = FALSE;

}

}

/* Read the end header of the input file and write it to the output file */

fread(&endhead, sizeof(endhead), 1, fpin);

fwrite(&endhead, sizeof(endhead), 1, fpout1);
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/* Get the current value of the file-position pointer */

fp = ftell(fpin);

}

/*****************************************************************************

* Subroutine write_asc2_header() *

* *

* Description: *

* This subroutine writes the header information in the asc2 format output files. Each asc2 *

* file contains the IRIGB times, maximum loads (Vmax), and minimum loads (Vmin) for *

* each input channel in the input file. *

* *

****************************************************************************/

void write_asc2_header()

{

int i, j;

char temp_name[] = " ";

for (i = 0; i < num_chans; i++)

{

bzero((char *) (&temp_name), sizeof(temp_name));

if (do_calc[i] == TRUE)

{

strncpy(temp_name, chan_name[i], 13);

fprintf(fp_sigma_txt[i], "format asc 2 .1 \n");

fprintf(fp_sigma_txt[i], "nChans 1\n");

fprintf(fp_sigma_txt[i], "names ");

fprintf(fp_sigma_txt[i], "%13s", temp_name);

fprintf(fp_sigma_txt[i], "\n");

fprintf(fp_sigma_txt[i], "data001 \n");

}

}

}

/*****************************************************************************

* Subroutine skip_data() *

* *

* Description: *

* This subroutine reads data blocks from the input file until the start taxiing time is reached. *

* It positions the file pointer to the start taxiing time. It also calculates the time interval *

* between two adjacent data points to figure out the number of data blocks in 1 minute. *

* *
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****************************************************************************/

void skip_data()

{

int i, j, k, offset;

float delta_t, num_buf;

/* Check if the start taxiing time is reached */

for (i = 0; i < num_data_blocks; i++)

{

fread(&data_read[i], data_buff_size, 1, fpin);

if (data_read[i].irig_time >= starting_time)

{

/* Read irigb time and data */

data_write1.irig_time = data_read[i].irig_time;

fwrite(&data_write1, data_buff_size, 1, fpout1);

break;

}

}

/* Move the file pointer to the start taxiing time */

if (i == 0)

{

fread(&data_read[1], data_buff_size, 1, fpin);

offset = -2 * data_buff_size;

}

else

{

offset = -data_buff_size;

}

/* Calculate the time interval between 2 adjacent data points */

delta_t = (data_read[1].irig_time - data_read[0].irig_time) / 10000.0;

/* Calculate the number of data blocks containing in 1 minute (60 sec) */

num_buf = NUM_SECONDS / delta_t;

normal_buf = (int) num_buf;

/* Move the file position indicator to the start taxiing time */

fseek(fpin, offset, SEEK_CUR);
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}

/*****************************************************************************

* Subroutine read_data() *

* *

* Description: *

* This subroutine determines the number of data blocks to read into data_read buffers. *

* After each reading, it checks to see if the drop or stop time is reached. If yes, it sets the *

* last_data_read indicator to TRUE and determines the buffer size for the last data read. If *

* no, it sets the buffer size and move the file pointer to the right position for the next data *

* read. *

* *

****************************************************************************/

void read_data()

{

int i, count, offset;

num_read++;

num_blocks = 0;

bzero((char *) (&data_write1), sizeof(data_write1));

/* Determine the number of data blocks to read */

if (first_time == TRUE)

{

count = normal_buf + 2;

}

else

{

count = normal_buf + 1;

}

for (i = 0; i < count; i++)

{

/* Read data */

fread(&data_read[i], data_buff_size, 1, fpin);

num_blocks++;

/* Check if the drop or stop time is reached */

if (data_read[i].irig_time >= drop_time)

{

/* Indicate the last data read */

last_data_read = TRUE;
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time_deltaa = data_read[i].irig_time;

data_write1.irig_time = data_read[i].irig_time;

buf_size = i+1;

break;

}

}

/* Check if this is the last data read */

if (last_data_read == FALSE)

{

buf_size = count-1;

time_deltaa = data_read[buf_size-1].irig_time;

data_write1.irig_time = data_read[buf_size-1].irig_time;

/* Move the file pointer to the right position for next data read */

offset = -data_buff_size;

fseek(fpin, offset, SEEK_CUR);

}

}

/*****************************************************************************

* Subroutine determine_max_min() *

* *

* Description: *

* This subroutine determines Vmax and Vmin loads for the current data read. *

* Vi = Vmax if Vi > Vi-1 and Vi > Vi+1 *

* Vi = Vmin if Vi < Vi-1 and Vi < Vi+1 *

* In cases that Vi-1 < Vi < Vi+1 or Vi-1 > Vi > Vi+1, Vi is definitely not Vmax nor Vmin. *

* In these special cases, comparisons will continue beyond i+1 data point. When a Vmax *

* or Vmin is found, its IRIGB time and its value are written into the asc2 file and also *

* stored in two dimensional min_max_value arrays to be used later for calculating *

* crack growths. *

* *

****************************************************************************/

void determine_max_min()

{

char ch_name[] = " ";

float save_euc[MAXBUFS];

float calc_stress, min_max;

int i, j, k, l, index, start_index, cur_index;

short max_min_found;

/* Reset indicators and variables */
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bzero((char *) (&processed_done), sizeof(processed_done));

bzero((char *) (&min_max_value), sizeof(min_max_value));

bzero((char *) (&min_max_time), sizeof(min_max_time));

/* For each channel */

for ( j = 0; j < num_chans; j++)

{

bzero((char *) (&temp_euc), sizeof(temp_euc));

/* Load data into working temp_euc buffers */

if (do_calc[j] == TRUE)

{

if (last_data_read == FALSE)

{

for (i = 0; i < (buf_size+1); i++)

{

temp_euc[i] = data_read[i].euc_data[j];

}

}

else

{

for (i = 0; i < buf_size; i++)

{

temp_euc[i] = data_read[i].euc_data[j];

}

}

/* Determine max loads Vmax and min loads Vmin */

i = 0;

index = 0;

while ((i < buf_size) && (processed_done[j] == FALSE))

{

if (i == 0)

{

if (first_time == TRUE)

{

l = 0;

if (temp_euc[i] < temp_euc[i+1])

{

prev_type[j] = MIN;
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prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else if (temp_euc[i] > temp_euc[i+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

max_min_found = FALSE;

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

max_min_found = TRUE;

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

else if (temp_euc[k] < temp_euc[k+1])

{

max_min_found = TRUE;

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

if (max_min_found == FALSE)

{

printf("\nChan %s has the same data value of %15.2f!!!\n",

chan_name[j], temp_euc[1]);

printf("crackGrowth program terminated!!!\n");
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exit (0);

}

} /* if (temp_euc[i] < temp_euc[i+1]) */

} /* if (first_time == TRUE) */

else

{

l = 1;

min_max_value[j][0] = last_data[j];

min_max_time[j][0] = last_data_time[j];

if ((prev_value[j] == end_value[j]) && (prev_type[j] == end_type[j]))

{

if (temp_euc[i] < temp_euc[i+1])

{

if (prev_type[j] == MAX)

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

}

}

}

else

{

if (prev_type[j] == MIN)

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;
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index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

} /* else */

}

}

else

{

if (temp_euc[i] < temp_euc[i+1])

{

if (temp_euc[i] < end_value[j])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

}
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}/* if (temp_euc[i] < temp_euc[i+1]) */

else

{

if (temp_euc[i] > end_value[j])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

} /* if (temp_euc[k] < temp_euc[k+1]) */

} /* for (k = (i+1); k < buf_size; k++) */

}

}

}

} /* first_time == FALSE */

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else if (i <= (buf_size-2))

{

if (temp_euc[i] > temp_euc[i+1])

{

if (prev_type[j] == MIN)

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;
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fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

if ((i+1) >= (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

}

else

{

if (temp_euc[buf_size-1] < temp_euc[buf_size])

{

prev_type[j] = MIN;

end_type[j] = MIN;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

else

{



53

for (k = (i+1); k < buf_size; k++)

{

if (k < (buf_size-1))

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

index = k+1;

break;

}

}

else

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] < temp_euc[buf_size])

{

prev_type[j] = MIN;

end_type[j] = MIN;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else



54

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

}

}

}

}

else if (temp_euc[i] < temp_euc[i+1])

{

if (prev_type[j] == MAX)

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

index = i+1;

l++;

}

else

{

if ((i+1) >= (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] > temp_euc[buf_size])

{

prev_type[j] = MAX;
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end_type[j] = MAX;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (k < (buf_size-1))

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

index = k+1;

break;

}

}

else

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;
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fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] > temp_euc[buf_size])

{

prev_type[j] = MAX;

end_type[j] = MAX;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

} /* if (temp_euc[buf_size-1] > temp_euc[buf_size]) */

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

} /* if (last_data_read != TRUE) */

index = buf_size;

}

}

}

}

}

else /* temp_euc[i] = temp_euc[i+1] */

{

index = i + 1;

}

}

else if (i == (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;
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fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[i] < temp_euc[i-1])

{

if (temp_euc[i] < temp_euc[i+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

end_type[j] = MIN;

end_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[i];

}

}

else

{

if (temp_euc[i] > temp_euc[i+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

end_type[j] = MAX;

end_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[i];

}
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}

} /* if (last_data_read != TRUE) */

index = buf_size;

}

if (min_max_value[j][l-1] <= 0.0)

{

strncpy(ch_name, chan_name[j], 10);

printf("\nChan %10s has BAD data %9.2f!! ", ch_name, min_max_value[j][l-1]);

printf("at Irigb time = %9.3f\n\n", (float) min_max_time[j][l-1]/10000.0);

printf("crackGrowth program terminated!!!\n");

exit (0);

}

i = index;

} /* while ((i < buf_size) && (processed_done[j] == FALSE)) */

write_index[j] = l;

last_data[j] = min_max_value[j][l-1];

last_data_time[j] = min_max_time[j][l-1];

} /* if (do_calc[j] == TRUE) */

} /* for ( j = 0; j < num_chans; j++) */

}

/*****************************************************************************

* Subroutine calculate_deltaa() *

* *

* Description: *

* This subroutine uses the Vmax and Vmin loads determined in subroutine *

* determine_max_min() to calculate half cycle crack growth delta a. It sums up all *

* calculated delta a to get the total crack growth size. It also determines the worst half *

* cycle ratio Ri = load_min / load_max during the period between takeoff run and cruise *

* power. The worst half cycle Vmax load will be used in calculating the number of *

* operational flights. *

* *

****************************************************************************/

void calculate_deltaa()

{

int i, j, k, l;

double Ai_1, pow_Kmax, pow_Ri, sqrt_value, double_const;

float Ri, Kmax, float_sum_deltaa;

float load_max, load_min, stress;

short cal_deltaa;

bzero((char *) (&deltaa), sizeof(deltaa));

double_const = 10000.0;
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/* For each channel */

for ( j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

if (first_time == TRUE)

{

Ai_1 = apc[j];

sum_a[j] = apc[j];

}

else

{

Ai_1 = sum_a[j];

}

for (i = 1; i < write_index[j]; i++)

{

cal_deltaa = FALSE;

/* Determine the Vmax and Vmin in this half cycle */

if (min_max_value[j][i-1] < min_max_value[j][i])

{

load_min = min_max_value[j][i-1];

load_max = min_max_value[j][i];

cal_deltaa = TRUE;

}

else if (min_max_value[j][i-1] > min_max_value[j][i])

{

load_min = min_max_value[j][i];

load_max = min_max_value[j][i-1];

cal_deltaa = TRUE;

}

if (cal_deltaa == TRUE)

{

Ri = load_min / load_max;

/* Add the previous crack growth delta a to Ai_1 */

Ai_1 += deltaa[j][i-1];

/* Convert load into stress */
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stress = stress_coef[j]*load_max;

/* Calculate crack growth delta a */

sqrt_value = sqrt((double) PI*Ai_1/Q);

Kmax = A*Mk*stress*(float) sqrt_value;

pow_Kmax = pow((double) Kmax, (double) m[j]);

pow_Ri = pow((double) (1.0-Ri), (double) n[j]);

deltaa[j][i] = C_OVER_2[j] * pow_Kmax * pow_Ri;

/* Add the current crack growth to the sum of delta a */

sum_deltaa[j] += deltaa[j][i];

sum_a[j] += deltaa[j][i];

/* Determine the worst half cycle */

if ((min_max_time[j][i-1] >= takeoff_time) &&

(min_max_time[j][i-1] <= cruise_time))

{

if (Ri < Ri_min[j])

{

Ri_min[j] = Ri;

Vmax[j] = load_max;

Vmin[j] = load_min;

Tmax[j] = min_max_time[j][i-1];

}

}

} /* if (cal_deltaa == TRUE) */

} /* for (i = 1; i < write_index[j]; i++) */

float_sum_deltaa = (float) double_const * sum_deltaa[j];

data_write1.euc_data[j] = double_const * sum_deltaa[j];

} /* if (do_calc[j] == TRUE) */

} /* for ( j = 0; j < num_chans; j++) */

/* Write data into output file */

fwrite(&data_write1, data_buff_size, 1, fpout1);

if (first_time == TRUE)

{

first_time = FALSE;

}

}

/*****************************************************************************
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* Subroutine calculate_flights() *

* *

* Description: *

* This subroutine uses the worst half cycle Vmax for calculating the number of operational *

* flights based on the first flight load data. *

* *

****************************************************************************/

void calculate_flights()

{

int i, j;

float real_flight, remain;

double pow_f1, pow_a;

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

f[j] = Vmax[j] / Vstar[j];

pow_f1 = pow((double) f[j], (double) (m[j]-2.0));

numerator[j] = 1.0 - pow_f1;

pow_a = pow((double) (1.0 + (sum_deltaa[j]/apc[j])), (double) (1.0-(m[j]/2.0)));

denominator[j] = 1.0 - pow_a;

real_flight = numerator[j]/denominator[j];

remain = real_flight - (int) real_flight;

if (remain >= 0.5)

{

int_flight[j] = (int) real_flight + 1;

}

else

{

int_flight[j] = (int) real_flight;

}

}

}

}

/*****************************************************************************

* Subroutine generate_summary() *

* *

* Description: *

* This subroutine generates a summary for all channels in the input file. The summary *

* contains the size of total crack growth, the number of operational flights, the operational *

* load factor, the worst half cycle Vmax, Vmin, and its IRIGB time. Additionally, the *
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* numerator and the denominator that are used to calculate the number of operational *

* flights are also included in the summary. *

* *

****************************************************************************/

void generate_summary()

{

int i, j;

char name[NAMES_SIZE];

fwrite("B-52B hooks Crack Growth Flights f Vmax Vmin Irigb time\n\n",

strlen("B-52B hooks Crack Growth Flights f Vmax Vmin Irigb time\n\n"),

1, fpout2);

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

strncpy(name, chan_name[j], NAMES_SIZE);

fprintf(fpout2, "%s", name);

fprintf(fpout2, "%10.4e ", sum_deltaa[j]);

fprintf(fpout2, "%6d ", int_flight[j]);

fprintf(fpout2, " %7.4f ", f[j]);

fprintf(fpout2, " %9.2f ", Vmax[j]);

fprintf(fpout2, "%9.2f ", Vmin[j]);

fprintf(fpout2, "%9.3f\n", (float) Tmax[j]/10000.0);

}

}

fwrite("\n\n\nB-52B hooks Numerator Denominator\n\n",

strlen("\n\n\nB-52B hooks Numerator Denominator\n\n"), 1, fpout2);

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

strncpy(name, chan_name[j], NAMES_SIZE);

fprintf(fpout2, "%s", name);

fprintf(fpout2, "%10.4e ", numerator[j]);

fprintf(fpout2, "%10.4e\n", denominator[j]);

}

}

}
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APPENDIX C 
MATERIAL PROPERTIES

Material properties of B-52B pylon hooks and Pegasus adapter pylon hooks are listed in 
Table C1 and Table C2.

Table C1. Material properties of B-52B pylon hooks and Pegasus adapter pylon hooks. 

Component Material
σU
ksi

σY
ksi

τU
ksi

KIC

ksi in .

C
in .

cycle
ksi in .

m( )− m n

B-52B front hook   Inconel 718* 175 145 135 125 0.922×10–11 3.60 2.16

B-52B rear hooks AMAX MP35N^ 250 235 141 124 2.944×10–11 3.24 1.69

Pegasus hooks AMAX MP35N^ 250 235 141 124 2.944×10–11 3.24 1.69
* Inconel 718 is a registered trademark of Huntington Alloy Products Division, International Nickel Company, 

	 West Virginia.    

^ AMAX MP35N is a trademark of SPS Technologies, Inc., Jenkintown, Pennsylvania.

Table C2. Material properties of Inconel 718 and AMAX MP35Nalloys.

Material E, lb/in2 G, lb/in2 ν ρ, lb/in3 α, in/in-˚F

Inconel 718 29.60×106 ----- ----- 0.297 6.40×106

AMAX MP35N 34.05×106 11.74×106 0.39 0.322 7.10×106
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FIGURES
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Figure 1. The B-52B airplane carrying the winged Pegasus rocket/X-43 systems (40,000 lb).
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Figure 2. Surface flaw shape and plasticity factor for semi-elliptic surface cracks.
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cycle theory.
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Figure 5. Geometry of B-52B pylon front hook.
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Figure 6. Distribution of tangential stress, σt , along the inner boundary of the B-52B pylon front 
hook; VA =10,000 lb.
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Figure 11. Loading spectrum of the B-52B front hook (VA) carrying the Hyper-X launching ve-
hicle during takeoff.
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Figure 12. Loading spectrum of the B-52B rear left hook (VBL) carrying the Hyper-X launch 
vehicle during takeoff.
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Figure 13. Loading spectrum of the B-52B rear right hook (VBR) carrying the Hyper-X launching 
vehicle during takeoff.
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Figure 14. Loading spectrum of the Pegasus pylon front left hook (VPFL) carrying the Hyper-X 
launching vehicle during takeoff.
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Figure 15. Loading spectrum of the Pegasus pylon front right hook (VPFR) carrying the Hyper-X 
launching vehicle during takeoff.
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Figure 16. Loading spectrum of the Pegasus pylon rear left hook (VPRL) carrying Hyper-X 
launching vehicle during takeoff.
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Figure 17. Loading spectrum of the Pegasus pylon rear right hook (VPRR) carring the Hyper-X 
launching vehicle during takeoff.

3.00 0.06940

0.06935

0.06930

0.06925

0.06920

0.06915

0.06910

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Stop taxiing
Resume taxiing

Cruise power

Gust

Δa,
in

Crack
length,

in

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060342

Δa1 = 1.9258 x 10–4 in

0
Start taxiing

Takeoff run

Figure 18. Crack growth curve for the B-52B front hook (VA); B-52B carrying the Hyper-X 
launching vehicle; air-launching flight.
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Figure 19. Crack growth curve for the B-52B rear left hook (VBL); B-52B carrying the Hyper-X 
launching vehicle; air-launching flight.
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Figure 20. Crack growth curve for the B-52B rear right hook (VBR); B-52B carrying the Hyper-X 
launching vehicle; air-launching flight.
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Figure 21. Crack growth curve for the Pegasus pylon front left hook (VPFL); B-52B carrying the 
Hyper-X launching vehicle; air-launching flight.
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Figure 22. Crack growth curve for the Pegasus pylon front right hook (VPFR); B-52B carrying the 
Hyper-X launching vehicle; air-launching flight.
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Figure 23. Crack growth curve for the Pegasus pylon rear left hook (VPRL); B-52B carrying the  
Hyper-X launching vehicle; air-launching flight.
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Figure 24. Crack growth curve for the Pegasus pylon rear right hook (VPRR); B-52B carrying the 
the Hyper-X launching vehicle; air-launching flight.
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Figure 25. Crack growth curve for the Pegasus pylon front hook (VA); B-52B carrying the Hyper‑X 
launching vehicle; captive flight.
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Figure 26. Crack growth curve for the B-52B rear left hook (VBL); B-52B carrying the Hyper-X 
launching vehicle; captive flight.
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Figure 27. Crack growth curve for the B-52B rear right hook (VBR); B-52B carrying the Hyper-X 
launching vehicle; captive flight.
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Figure 28. Crack growth curve for the Pegasus pylon front left hook (VPFL); B-52B carrying the 
Hyper-X launching vehicle; captive flight.
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Figure 29. Crack growth curve for the Pegasus pylon front right hook (VPFR); B-52B carrying the 
Hyper-X launching vehicle; captive flight.
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Figure 30. Crack growth curve for the Pegasus pylon rear left hook (VPRL); B-52B carrying the 
Hyper-X launching vehicle; captive flight.
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Figure 31. Crack growth curve for the Pegasus pylon rear right hook (VPRR); B-52B carrying the 
Hyper-X launching vehicle; captive flight.
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